Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(1): e17048, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37988193

RESUMO

Understanding the mechanisms by which individual organisms respond and populations adapt to global climate change is a critical challenge. The role of plasticity and acclimation, within and across generations, may be essential given the pace of change. We investigated plasticity across generations and life stages in response to ocean acidification (OA), which poses a growing threat to both wild populations and the sustainable aquaculture of shellfish. Most studies of OA on shellfish focus on acute effects, and less is known regarding the longer term carryover effects that may manifest within or across generations. We assessed these longer term effects in red abalone (Haliotis rufescens) using a multi-generational split-brood experiment. We spawned adults raised in ambient conditions to create offspring that we then exposed to high pCO2 (1180 µatm; simulating OA) or low pCO2 (450 µatm; control or ambient conditions) during the first 3 months of life. We then allowed these animals to reach maturity in ambient common garden conditions for 4 years before returning the adults into high or low pCO2 treatments for 11 months and measuring growth and reproductive potential. Early-life exposure to OA in the F1 generation decreased adult growth rate even after 5 years especially when abalone were re-exposed to OA as adults. Adult but not early-life exposure to OA negatively impacted fecundity. We then exposed the F2 offspring to high or low pCO2 treatments for the first 3 months of life in a fully factorial, split-brood design. We found negative transgenerational effects of parental OA exposure on survival and growth of F2 offspring, in addition to significant direct effects of OA on F2 survival. These results show that the negative impacts of OA can last within and across generations, but that buffering against OA conditions at critical life-history windows can mitigate these effects.


Assuntos
Gastrópodes , Água do Mar , Animais , Concentração de Íons de Hidrogênio , Acidificação dos Oceanos , Dióxido de Carbono/efeitos adversos , Reprodução , Gastrópodes/fisiologia
2.
Am Nat ; 201(5): E90-E109, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37130228

RESUMO

AbstractRapid environmental change is affecting many organisms; some are coping well, but many species are in decline. A key mechanism for facilitating success following environmental change is phenotypic plasticity. Organisms use cues to respond phenotypically to environmental conditions; many incorporate recent information (within-generation plasticity) and information from previous generations (transgenerational plasticity). We extend an existing evolutionary model where organisms utilize within-generational plasticity, transgenerational plasticity, and bet hedging to include changes in environmental regime. We show how when rapid evolution of plasticity is not possible, the effect of environmental change (altering the environment mean, variance, or autocorrelation or cue reliability) on population growth rate depends on the population's evolutionary history and past evolutionary responses to historical environmental conditions. We then evaluate the predictions that populations adapted to highly variable environments or with greater within-generational plasticity are more likely to successfully respond to environmental change. We identify when these predictions fail and show that environmental change is most detrimental when previously reliable cues become unreliable. When multiple cues become unreliable, environmental change can cause deleterious effects regardless of the population's evolutionary history. Overall, this work provides a general framework for understanding the role of plasticity in population responses to rapid environmental change.


Assuntos
Adaptação Fisiológica , Sinais (Psicologia) , Reprodutibilidade dos Testes , Adaptação Psicológica , Evolução Biológica , Fenótipo
3.
Ecol Evol ; 12(11): e9524, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36407901

RESUMO

Transgenerational plasticity (TGP)-when a parent or previous generation's environmental experience affects offspring phenotype without involving a genetic change-can be an important mechanism allowing for rapid adaptation. However, despite increasing numbers of empirical examples of TGP, there appears to be considerable variation in its strength and direction, yet limited understanding of what causes this variation. We compared patterns of TGP in response to stress across two populations with high versus low historical levels of stress exposure. Specifically, we expected that exposure to acute stress in the population experiencing historically high levels of stress would result in adaptive TGP or alternatively fixed tolerance (no parental effect), whereas the population with low levels of historical exposure would result in negative parental carryover effects. Using a common sessile marine invertebrate, Bugula neritina, and a split brood design, we exposed parents from both populations to copper or control treatments in the laboratory and then had them brood copper-naïve larvae. We then exposed half of each larval brood to copper and half to control conditions before allowing them to grow to maturity in the field. Maternal copper exposure had a strong negative carryover effect on adult offspring growth and survival in the population without historical exposure, especially when larvae themselves were exposed to copper. We found little to no maternal or offspring treatment effect on adult growth and survival in the population with a history of copper exposure. However, parents from this population produced larger larvae on average and were able to increase the size of their larvae in response to copper exposure, providing a potential mechanism for maintaining fitness and suggesting TGP through maternal provisioning. These results indicate that the ability to adjust offspring phenotype via TGP may be a locally adapted trait and potentially influenced by past patterns of exposure.

4.
Front Plant Sci ; 12: 617815, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33790921

RESUMO

Variation in flower color due to transgenerational plasticity could stem directly from abiotic or biotic environmental conditions. Finding a link between biotic ecological interactions across generations and plasticity in flower color would indicate that transgenerational effects of ecological interactions, such as herbivory, might be involved in flower color evolution. We conducted controlled experiments across four generations of wild radish (Raphanus sativus, Brassicaceae) plants to explore whether flower color is influenced by herbivory, and to determine whether flower color is associated with transgenerational chromatin modifications. We found transgenerational effects of herbivory on flower color, partly related to chromatin modifications. Given the presence of herbivory in plant populations worldwide, our results are of broad significance and contribute to our understanding of flower color evolution.

5.
Wilderness Environ Med ; 29(3): 343-356, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29954662

RESUMO

INTRODUCTION: Recent analyses of data show a warming trend in global average air and sea surface ocean temperatures. The atmosphere and ocean have warmed, the amounts of snow and ice have diminished, the sea level has risen, and the concentrations of greenhouse gases have increased. This article will focus on climate change and projected effects on venomous marine and amphibious creatures with the potential impact on human health. METHODS: Retrospective analysis of environmental, ecological, and medical literature with a focus on climate change, toxinology, and future modeling specific to venomous aquatic and amphibious creatures. Species included venomous jellyfish, poisonous fish, crown-of-thorns starfish, sea snakes, and toxic frogs. RESULTS: In several projected scenarios, rising temperatures, weather extremes, and shifts in seasons will increase poisonous population numbers, particularly with certain marine creatures like jellyfish and crown-of-thorns starfish. Habitat expansions by lionfish and sea snakes are projected to occur. These phenomena, along with increases in human populations and coastal development will likely increase human-animal encounters. Other species, particularly amphibious toxic frogs, are declining rapidly due to their sensitivity to any temperature change or subtle alterations in the stability of their environment. If temperatures continue to rise to record levels over the next decades, it is predicted that the populations of these once plentiful and critically important animals to the aquatic ecosystem will decline and their geographic distributions will shrink. CONCLUSION: Review of the literature investigating the effect and forecasts of climate change on venomous marine and amphibious creatures has demonstrated that temperature extremes and changes to climatic norms will likely have a dramatic effect on these toxicological organisms. The effects of climate change on these species through temperature alteration and rising coastal waters will influence each species differently and in turn potentially affect commercial industries, travel, tourism, and human health.


Assuntos
Anfíbios , Mudança Climática , Peixes Venenosos , Hydrophiidae , Venenos de Anfíbios , Anfíbios/fisiologia , Animais , Cnidários/fisiologia , Ecologia , Venenos Elapídicos , Meio Ambiente , Peixes Venenosos/fisiologia , Humanos , Hydrophiidae/fisiologia , Peçonhas , Meio Selvagem
6.
Wilderness Environ Med ; 29(2): 226-238, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29395962

RESUMO

INTRODUCTION: Climate change has been scientifically documented, and its effects on wildlife have been prognosticated. We sought to predict the overall impact of climate change on venomous terrestrial species. We hypothesize that given the close relationship between terrestrial venomous species and climate, a changing global environment may result in increased species migration, geographical redistribution, and longer seasons for envenomation, which would have repercussions on human health. METHODS: A retrospective analysis of environmental, ecological, and medical literature was performed with a focus on climate change, toxinology, and future modeling specific to venomous terrestrial creatures. Species included venomous reptiles, snakes, arthropods, spiders, and Hymenoptera (ants and bees). Animals that are vectors of hemorrhagic infectious disease (eg, mosquitos, ticks) were excluded. RESULTS: Our review of the literature indicates that changes to climatic norms will have a potentially dramatic effect on terrestrial venomous creatures. Empirical evidence demonstrates that geographic distributions of many species have already shifted due to changing climatic conditions. Given that most terrestrial venomous species are ectotherms closely tied to ambient temperature, and that climate change is shifting temperature zones away from the equator, further significant distribution and population changes should be anticipated. For those species able to migrate to match the changing temperatures, new geographical locations may open. For those species with limited distribution capabilities, the rate of climate change may accelerate faster than species can adapt, causing population declines. Specifically, poisonous snakes and spiders will likely maintain their population numbers but will shift their geographic distribution to traditionally temperate zones more often inhabited by humans. Fire ants and Africanized honey bees are expected to have an expanded range distribution due to predicted warming trends. Human encounters with these types of creatures are likely to increase, resulting in potential human morbidity and mortality. CONCLUSIONS: Temperature extremes and changes to climatic norms may have a dramatic effect on venomous terrestrial species. As climate change affects the distribution, populations, and life histories of these organisms, the chance of encounters could be altered, thus affecting human health and the survivability of these creatures.


Assuntos
Distribuição Animal , Mudança Climática , Himenópteros/fisiologia , Serpentes/fisiologia , Aranhas/fisiologia , Meio Selvagem , Animais , Animais Venenosos/fisiologia
7.
Bioscience ; 66(9): 763-773, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28533564

RESUMO

Protecting coastal communities has become increasingly important as their populations grow, resulting in increased demand for engineered shore protection and hardening of over 50% of many urban shorelines. Shoreline hardening is recognized to reduce ecosystem services that coastal populations rely on, but the amount of hardened coastline continues to grow in many ecologically important coastal regions. Therefore, to inform future management decisions, we conducted a meta-analysis of studies comparing the ecosystem services of biodiversity (richness or diversity) and habitat provisioning (organism abundance) along shorelines with versus without engineered-shore structures. Seawalls supported 23% lower biodiversity and 45% fewer organisms than natural shorelines. In contrast, biodiversity and abundance supported by riprap or breakwater shorelines were not different from natural shorelines; however, effect sizes were highly heterogeneous across organism groups and studies. As coastal development increases, the type and location of shoreline hardening could greatly affect the habitat value and functioning of nearshore ecosystems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...